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Assessments of ship-strike risk for large whales typically use a single year of ship
traffic data and averaged predictions of species distributions. Consequently, they do
not account for variability in ship traffic or species distributions. Variability could reduce
the effectiveness of static management measures designed to mitigate ship-strike risk.
We explore the consequences of interannual variability on ship-strike risk using multiple
years of both ship traffic data and predicted fin, humpback, and blue whale distributions
off California. Specifically, risk was estimated in four regions that are important for
ship-strike risk management. We estimated risk by multiplying the predicted number
of whales by the distance traveled by ships. To overcome the temporal mismatch
between the available ship traffic and whale data, we classified the ship traffic data into
nearshore and offshore traffic scenarios using the percentage of ship traffic traveling
more than 24 nmi from the mainland coast, which was the boundary of a clean fuel
rule implemented in 2009 that altered ship traffic patterns. We found that risk for fin and
humpback whale populations off California increased as these species recovered from
whaling. We also found that broad-scale, northward shifts in blue whale distributions
throughout the North Pacific, likely in response to changes in oceanographic conditions,
were associated with increased ship-strike risk off northern California. The magnitude of
ship-strike risk for fin, humpback, and blue whales was influenced by the ship traffic
scenarios. Interannual variability in predicted whale distributions also influenced the
magnitude of ship-strike risk, but generally did not change whether the nearshore or
offshore traffic scenario had higher risk. The consistency in the highest risk from the
traffic scenarios likely occurred because areas containing the highest predicted number
of whales were generally the same across years. The consistency in risk from the traffic
scenarios suggests that static spatial management measures (e.g., changing shipping
lanes, creating areas to be avoided, and seasonal speed reductions) can provide an
effective means of mitigating risk resulting from ship traffic variability off California.

Keywords: species distribution modeling, interannual variability in species distributions, commercial shipping,
variability in ship traffic, spatially explicit risk assessment, ship-strike risk
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INTRODUCTION

Ship strikes are one of the largest sources of human-caused
mortality for fin (Balaenoptera physalus), humpback (Megaptera
novaeangliae), and blue (B. musculus) whales on the United States
West Coast (Carretta et al., 2017). The risk of ships striking
whales (hereafter, ship-strike risk) has been assessed for these
species in several regions: for all three species off the entire
United States West Coast (Rockwood et al., 2017) and southern
California (Redfern et al., 2013, 2019), for blue whales off the
entire United States West Coast (Hazen et al., 2017; Abrahms
et al., 2019b), and for humpback whales off San Francisco
(Dransfield et al., 2014). Many of these risk assessments and those
conducted for various locations around the world (e.g., Sri Lanka
and Canada; Williams and O’Hara, 2010; Priyadarshana et al.,
2016) use a single year of ship traffic data and predictions of
whale distributions that are averaged over several years. Redfern
et al. (2013) and Redfern et al. (2019) are exceptions because they
used more than one year of ship traffic data; Hazen et al. (2017)
and Abrahms et al. (2019b) developed near real-time tools to
predict blue whale distributions. However, most ship-strike risk
assessments do not account for variability in ship traffic, species
distributions, or both.

Recent studies suggest variability in both ship traffic and
whale distributions off California. An analysis of ship traffic off
California between 2008 and 2015 suggested that air pollution
regulations implemented at both state and international levels
changed the primary routes used by ships (Moore et al., 2018).
Specifically, the California Air Resources Board implemented
a rule on July 1, 2009 that required ships to use cleaner
burning fuels when traveling within 24 nmi of the mainland
coast. After implementation of the rule, ships began traveling
farther offshore (Figure 1 and Table 1) to reduce the amount of
time spent using the cleaner fuels, which were more expensive.
Use of offshore routes was found for the entire coast of
California (Moore et al., 2018) and for the major California ports:
San Francisco Bay (Jensen et al., 2015) and Los Angeles/Long
Beach (McKenna et al., 2012).

The boundary for clean fuel use was extended to include the
area around the Channel Islands in the Southern California Bight
on December 1, 2011. The International Maritime Organization
(IMO) also increased the international standards for clean
fuels in the U.S. Exclusive Economic Zone on August 1,
2012, which brought the international standards closer to the
California standards. Ship traffic off southern California showed
the strongest change in association with these changes in fuel
regulations (Moore et al., 2018). From 2012 to 2014, some traffic
began to return to the original nearshore routes and offshore
traffic shifted beyond the new clean fuel boundary (Figure 1 and
Table 1). Ship traffic off San Francisco showed similar, but smaller
changes, while traffic in the remaining areas primarily stayed
offshore (Figure 1 and Table 1). The IMO and California clean
fuel standards were similar by 2015 and ship traffic in all regions
was similar to the nearshore patterns observed in 2008 (Figure 1
and Table 1).

Species abundances and distributions have also changed off
California. There is strong evidence that fin and humpback

whale abundance has increased at broad scales in the North
Pacific (Barlow et al., 2011; Moore and Barlow, 2011), suggesting
that current levels of ship strikes do not negatively affect these
species at these broad scales. However, ship strikes may be an
issue at regional scales. Specifically, populations of humpback
whales that breed off Mexico and Central America are listed as
Threatened and Endangered, respectively, on the United States
Endangered Species List. Both populations feed off California and
it is possible that ship strikes could have negative population-
level consequences. It is also possible that a unique population of
fin whales remains year-round in the southern California Bight
(Forney and Barlow, 1998; Calambokidis et al., 2015) and that
ship strikes may impact this population.

There is no evidence that the abundance of blue whales in the
North Pacific is increasing and it has been suggested that this
population may have reached carrying capacity (Monnahan et al.,
2015). However, it has also been suggested that blue whales are
shifting farther north, potentially in response to changing ocean
conditions (Calambokidis et al., 2009). Consequently, abundance
may be increasing off British Columbia and in the Gulf of
Alaska, but decreasing off California. Interannual variability in
species distributions was also identified as an important source of
uncertainty in habitat models for fin, blue, and humpback whales
built using line-transect survey data (Forney et al., 2012) and
telemetry data (Hazen et al., 2017).

Static management measures, which include changing
shipping lanes and establishing areas to be avoided, are
commonly used to mitigate ship-strike risk. For example,
the International Maritime Organization (IMO) adopted five
measures between 2002 and 2009 that relocate ship traffic in
waters off eastern North America to minimize the co-occurrence
of right whales and ships (Silber et al., 2012). Traffic separation
schemes were established by the IMO for the major California
ports and are reflected in the dominant ship traffic patterns (i.e.,
the darkest blue color off Southern California and San Francisco
in the 2008 map in Figure 1). These lanes were modified in
2013 to reduce ship-strike risk. Voluntary and incentivized
speed reductions have also been implemented in these traffic
separation schemes to mitigate ship-strike risk (e.g., Freedman
et al., 2017) because studies (e.g., Conn and Silber, 2013) have
shown that the probability of a fatal ship strike increases at
higher ship speeds. Voluntary shipping lanes have also been
used to manage ship traffic in National Marine Sanctuaries (e.g.,
Monterey Bay National Marine Sanctuary) and off southern
California. Interannual variability in species distributions could
reduce the effectiveness of static management measures designed
to reduce ship-strike risk. We used ship traffic data and whale
distributions off California to explore the consequences of
interannual variability on ship-strike risk.

MATERIALS AND METHODS

Ship Traffic Data
Automatic Identification Systems (AIS) are maritime tracking
systems that were adopted by the IMO and were initially
required (December 31, 2004) on international voyages for
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FIGURE 1 | Maps of distance traveled (km/day) by ships from July–December in a 10 × 10 km grid. Analyses were conducted in four regions that are named from
north to south as north, San Francisco, central, and south. Traffic was classified into nearshore (2008 and 2015; defined as having more traffic within the July 2009
clean fuel boundary compared to offshore traffic) and offshore (2009–2011; defined as a majority of traffic outside the July 2009 clean fuel boundary) scenarios.
Classification of the 2012–2014 traffic was done on a region-by-region basis.

all ships ≥300 gross tons, domestic voyages for cargo vessels
≥500 gross tons, and on all passenger ships (International
Maritime Organization [IMO], 2014). The type and range of
ships required to use AIS has expanded since this time (for
example, see1). Data include dynamic information, such as ship
position, speed, and course, and static information, such as ship
identifier, type, and dimensions. Data obtained from the US
Coast Guard’s terrestrial Nationwide Automatic Identification

1https://www.navcen.uscg.gov/?pageName=AISRequirementsRev

System extend throughout the U.S. exclusive economic zone (i.e.,
out to 200 nmi) because the system was designed to improve
navigational safety, search and rescue, and maritime security.
However, the amount of data received may decrease farther from
shore due to transmission loss.

Moore et al. (2018) analyzed an 8-year time series of terrestrial
AIS data (2008–2015). We followed the methodology of Moore
et al. (2018) to summarize the cumulative distance traveled by
ships between July and December each year in a 10 × 10 km
grid. We selected ships greater than 80 m in length and used only
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TABLE 1 | The percentage of traffic (i.e., the sum of the distance traveled per day
in each grid cell) that occurs more than 24 nmi from the mainland coast (i.e., the
boundary established by the California Air Resources Board as part of the clean
fuel rule implemented on July 1, 2009) in each region.

2008 2009 2010 2011 2012 2013 2014 2015

North 84 95 96 96 96 97 96 87

San Francisco 54 64 66 67 64 63 62 52

Central 84 96 98 98 98 97 97 78

South 38 62 69 69 56 56 52 48

ships traveling at a speed over ground ≥2.5 knots to ensure that
only underway ships were included in the analyses. A radius of
approximately 5.6 km from the center of a grid cell was used to
calculate the cumulative distance traveled because the area of the
resulting circle is the same as the area of the grid cells. We divided
the July–December cumulative distance traveled in each grid cell
by the number of days of AIS data collection to account for data
gaps (e.g., missing data in 2008 and 2010).

Whale Distributions
We used predictions of fin, humpback, and blue whale
distributions from models produced by Becker et al. (2016).
Becker et al. (2016) developed whale-habitat models using
7 years of line-transect survey data collected by NOAA Fisheries’
Southwest Fisheries Science Center between July and December
(i.e., 1991, 1993, 1996, 2001, 2005, 2008, and 2009). Habitat
variables were derived from in situ and remotely sensed
oceanographic data for humpback whales and output from a
Regional Ocean Modeling System for fin and blue whales. Data
from the 2009 survey could not be used in the humpback
whale models because the survey and, concomitantly, the in situ
oceanographic sampling did not cover the entire study area.

Becker et al. (2016) used generalized additive models (GAMs)
(Wood, 2006) to relate habitat variables to the number of whales
in transect segments that were approximately 5 km. They fit
GAMs in the R (version 3.1.1; R Core Team, 2014) package
“mgcv” (version 1.8–3; Wood, 2011). The models were used to
predict the number of whales in an approximately 10 × 10 km
grid for distinct 8-day composites covering the entire survey
period. We use the annual average of these predictions and
the average across all years of survey data in our analyses
(hereafter, annual and mean predictions). The ship-traffic grid
was different from the whale distribution grid. Consequently,
the predicted whale densities were overlaid on the ship traffic
grid and used to derive the predicted number of whales in each
ship traffic grid cell. This approach preserved the total abundance
in the study area.

Ship-Strike Risk
We assess risk in four regions (Figure 1) that are important
for ship-strike risk management. In particular, the southern
and San Francisco regions contain the major California ports
and efforts have been made in both regions to mitigate ship-
strike risk. The central region contains traffic traveling between
California ports, while the northern region contains traffic

traveling to ports in the Pacific Northwest. The regions extend
from the shore to 250 km beyond the shelf edge, which is an
important topographic feature for many species of baleen whales
because of its role in concentrating their prey (e.g., Fiedler et al.,
1998; Croll et al., 2005). The shelf edge was derived from a
global, seafloor geomorphic features map (Harris et al., 2014).
The offshore boundary of the regions encompasses a majority of
California ship traffic (approximately 90–95%) and reduces the
potential for bias from AIS signal decay farther offshore.

Latitudinal breaks for each region were selected using
biogeographical boundaries (i.e., Point Conception for the
boundary between the southern and central regions) and
biologically important areas (BIAs) for blue and humpback
whales (BIAs have not yet been defined for fin whales). These
BIAs were defined by Calambokidis et al. (2015) and represent
areas where concentrations of feeding animals were observed
in multiple years of non-systematic, coastal surveys designed
to maximize encounters with blue and humpback whales for
photo-identification and tagging studies.

We estimate ship-strike risk by multiplying the predicted
number of whales by the mean daily kilometers of ship traffic
within a grid cell. Consequently, we are defining risk as the
co-occurrence between whales and ships, as has been done for
multiple species (e.g., Vanderlaan et al., 2009; Williams and
O’Hara, 2010; Redfern et al., 2013). There is a temporal mismatch
between the ship traffic and whale data available off California:
ship traffic data are available from 2008 to 2015, while whale
distribution data are available from 1991 to 2009. To overcome
this temporal mismatch, we classified the time series of ship
traffic data into traffic scenarios using the percentage of ships
traveling more than 24 nmi from the mainland coast (i.e., the
2009 clean fuel boundary).

The percentage of traffic traveling more than 24 nmi from the
mainland coast was the lowest in 2008 and 2015 in all four regions
(Table 1). We used the distance traveled in each grid cell for
these 2 years to define a nearshore traffic scenario. The percentage
of traffic traveling more than 24 nmi from the mainland coast
generally increased from 2009 to 2011 (Table 1). Consequently,
we used the ship traffic data from 2009 to 2011 to define an
offshore traffic scenario. Traffic patterns vary by region in 2012–
2014 and cannot be assigned to a single scenario (Table 1).

The total distance traveled by ships decreased throughout
the time series of ship traffic data. Consequently, we had to
correct for this decrease in distance traveled to meaningfully
combine years of ship traffic data. Specifically, we calculated
a correction factor by dividing the kilometers traveled in each
region by the mean kilometers traveled in each region over all
years. A correction factor greater than one implied that the
distance traveled in that year was higher than the mean for that
region. We divided the distance traveled by ships in each grid cell
by this correction factor. Ship speeds also decreased through the
time series of ship traffic data (Moore et al., 2018). Consequently,
we cannot meaningfully include ship speed in our definition of
ship-strike risk.

We initially assessed the risk associated with the ship traffic
scenarios using mean predicted whale distributions (i.e., the
average of the predictions across all years of survey data). In
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particular, risk associated with the nearshore traffic scenario was
defined by the mean and standard error of the risk in 2008 and
2015 (i.e., risk in each year was calculated as the mean predicted
number of whales multiplied by the distance traveled by ships).
The risk associated with the offshore traffic scenario was defined
by the mean and standard error of the risk in 2009, 2010, and
2011. We also calculated the mean and standard error of the
risk in 2012, 2013, and 2014, but classify its association with
the traffic scenarios on a region-by-region basis. To compare
risk among regions, we summed the risk for all grid cells in
each region and divided by the area of the region. We compared
risk in the traffic scenarios and calculated the percent change in
risk for the nearshore versus offshore scenarios and nearshore
versus 2012–2014 traffic scenarios. Finally, we mapped risk for
the nearshore and offshore traffic scenarios using mean predicted
whale distributions and the 2008 (representative of the nearshore
scenario) and 2010 (representative of the offshore scenario)
ship traffic data.

Risk calculated using the mean whale distributions was
compared to risk derived from the annual predictions from
the Becker et al. (2016) models to understand how interannual
variability in species distributions affects risk. Interannual
variability in locations containing the highest predicted number
of whales (Figure 2) was assessed using the number of years
(7 years for fin and blue whales; 6 years for humpback whales)
the prediction in each grid cell was among the highest 5% of
all predictions. These analyses were conducted using all whale
predictions (i.e., from the coast of California out to 300 nmi).
Changes in predicted abundance are not included in this metric
because the highest 5% of predictions are calculated for each
year. This metric identifies areas that consistently contained the
highest predicted number of whales, areas that never contained
the highest predicted numbers, and areas of variability.

To assess the effect of variability in whale distributions on risk,
we calculated the percent change in risk for the nearshore versus
offshore traffic scenarios for each species, region, and survey year
(i.e., a total of 80 calculations). Finally, we estimated the change in
the total risk experienced by each whale population since the start
of the survey period. Specifically, we looked at the ratio of the risk
in each survey year to the risk at the start of the survey period (i.e.,
1991) for the traffic scenario (i.e., nearshore or offshore) resulting
in the highest risk for each species in each region.

RESULTS

The region that had the highest density for each species also
had the highest mean ship-strike risk (i.e., risk assessed using
the mean of the predicted whale distributions; Figure 3). In
particular, density and mean risk were highest for fin whales
in the central region, for humpback whales off San Francisco,
and for blue whales in the south. However, the magnitude of
the mean risk within a region was influenced by the ship traffic
scenarios (Figures 3, 4, and Table 2). Interannual variability
in predicted whale distributions also influenced the magnitude
of ship-strike risk, but generally did not change the effect of
the traffic scenarios on risk (Figure 5). Specifically, interannual

variability did not change whether the nearshore or offshore
traffic scenario had higher risk.

In the south, ship-strike risk for fin whales was lowest
for the nearshore traffic scenario (Figures 3, 4). There was
a 16% increase in the mean risk associated with the offshore
traffic scenario for fin whales and a 5% increase in risk
when traffic occurred both nearshore and offshore (i.e., the
traffic scenario for 2012–2014; Table 2). Interannual variability
in predicted fin whale distributions resulted in a 9–23%
increase in risk for the offshore traffic scenario (Figure 5).
The opposite pattern was seen for humpback and blue
whales in the south (Table 2 and Figures 3–5). In particular,
mean risk decreased by 20% and annual risk by 6–27% for
humpback whales for the offshore versus nearshore traffic
scenario. Mean risk decreased 18% when traffic occurred in
both locations. Mean risk decreased approximately 6% for
blue whales for the offshore versus nearshore traffic scenario.
Risk generally decreased for the offshore versus nearshore
traffic scenario (range 4–10%) for annual predicted blue whale
distributions. However, offshore traffic had a higher risk than
nearshore traffic for the blue whale distributions predicted in
1993. Among all regions, years, and species, predicted blue
whale distributions in 1993 represented the only reversal in
the traffic scenario (i.e., nearshore versus offshore) having
the highest risk.

In the central region, risk for all three species was highest
for the nearshore traffic scenario and lower for the offshore
traffic scenario, which is represented by traffic in both 2009–
2011 and 2012–2014 for this region (Table 2 and Figures 3–5).
In particular, mean risk decreased by 9% for fin whales (range in
annual predictions = 2–14%), 34% for humpback whales (range
in annual predictions = 30–37%), and 18% for blue whales (range
in annual predictions = 14–23%) when traffic occurred offshore
(2009–2011) compared to nearshore.

The shift between nearshore and offshore traffic in the central
region corresponded to a change from ships using primarily the
northern and southern approaches off San Francisco (2008 and
2015) to increasing use of the western approach (2009–2011)
or the western and northern approaches (2012–2014; Figure 1).
Use of the western approach allowed ships to minimize travel
nearshore (i.e., within 24 nmi of the mainland coast). Risk
increased 6% for fin whales (range in annual predictions = 1–
11%) off San Francisco for the offshore versus nearshore traffic
scenario (i.e., in association with increased use of the western
approach) and increased 5% for the 2012–2014 versus nearshore
traffic scenario (i.e., in association with increased use of the
western and northern approaches) (Table 2 and Figures 3–5).
The opposite pattern was seen for humpback and blue whales
off San Francisco (Table 2 and Figures 3–5): risk decreased 16%
for humpback whales (range in annual predictions = 15–17%)
and 13% for blue whales (range in annual predictions = 10–
19%) for the offshore compared to nearshore traffic scenarios.
Risk also decreased for the 2012–2014 traffic scenario compared
to nearshore traffic scenario, although the change was generally
smaller (Table 2). Risk in the northern region for all species
followed similar patterns as off San Francisco. However, risk was
generally lower in the north (Figure 3) and the percent changes
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FIGURE 2 | Continued
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FIGURE 2 | Maps of annual and mean predicted species distributions for (A) fin, (B) humpback, and (C) blue whales. Habitat variables were derived from in situ and
remotely sensed oceanographic data for humpback whales and output from a Regional Ocean Modeling System for fin and blue whales. Data from the 2009 survey
could not be used in the humpback whale models because the survey and, concomitantly, the in situ oceanographic sampling did not cover the entire study area.
Surveys were only conducted off California in 1991 and 1993; consequently, predictions of humpback whale distributions could not be made off Oregon and
Washington in these 2 years. Other differences in the study area boundary for humpback whales and missing predictions within the study area (white grid cells) arise
from gaps in oceanographic sampling. The highest 2, 5, 10, . . ., and 40% of predicted values were calculated using the mean predicted densities. Data from all
years were categorized using the values from the mean to show changes in density among years.

in risk associated with the traffic scenarios were larger (Table 2
and Figure 5).

The previous results show that interannual variability in
predicted whale distributions influenced the magnitude of ship-
strike risk, but that the difference in risk from the nearshore
versus offshore traffic scenario was consistent across all years of
predicted whale distributions. To understand these results, we
identified areas that consistently contained the highest predicted
number of whales, areas that never contained the highest
predicted numbers, and areas of variability (Figure 6). In each

region, areas containing the highest predicted number of whales
were generally the same across years, as were areas that never
contained the highest predicted numbers.

Ship-strike risk was also influenced by large-scale increases
in whale abundance and large-scale shifts in distributions
(Figure 7). In particular, the total risk experienced by both fin
and humpback whale populations generally increased between
the 1990s and the 2000s in all regions, consistent with previously
documented increases in their abundance throughout the North
Pacific. The total risk experienced by the blue whale population
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FIGURE 3 | The scenarios associated with the 2008–2015 ship traffic (i.e., nearshore or offshore; 2012–2014 was classified as nearshore or offshore on
region-by-region basis) were defined using a boundary that was 24 nmi from the mainland coast (see text for details). The ship traffic scenarios influenced ship-strike
risk (predicted number of whales multiplied by the km/day traveled by ships) for fin, humpback, and blue whales in each region. The risk shown here was calculated
using the mean predicted whale distributions. The standard error of the mean risk was calculated using the years of ship traffic data in each scenario. The mean
predicted whale density (whales per 100 km2) in each region is also shown.

increased in the northern region in the 2000s, consistent with
previously documented northward shifts in their distribution
throughout the North Pacific.

DISCUSSION

Most ship-strike risk assessments do not account for variability
in species distributions, ship traffic, or both. We used whale
distributions and ship traffic data off California to explore
the consequences of interannual variability on ship-strike
risk. We found that areas containing the highest predicted
number of humpback and blue whales were the same among
all years of predictions (Figure 6). Predicted fin whale
distributions varied more than predicted humpback and blue
whale distributions. However, the highest fin whale predictions
were always found far from the coast and were never found
close to the coast (Figure 6). All three whale species feed
off California during the time period associated with the
predictions from the Becker et al. (2016) models (i.e., July–
December). The stability of the presence and absence of

the highest whale predictions observed at the scale of our
study suggests spatially persistent feeding areas or that these
areas are large enough to encompass ephemeral features
associated with feeding (Becker et al., 2019). These results
are consistent with the findings of Abrahms et al. (2019a)
that blue whale migrations more closely tracked long-term
averages of productivity than contemporaneous measurements
of productivity. Abrahms et al. (2019a) also found that blue
whales foraged in areas that had higher and more stable
long-term productivity.

The stability of the whale predictions resulted in specific
ship traffic scenarios consistently having higher ship-strike risk.
In particular, either the nearshore or offshore traffic scenario
(defined as within or more than 24 nmi from the coast,
respectively) consistently had the highest risk for each species
and region. Changes in ship traffic scenarios off California (i.e.,
nearshore versus offshore) were initiated by the shipping industry
in response to air pollution regulations. The consistency in risk
suggests that static spatial management measures (e.g., changing
shipping lanes, creating areas to be avoided, and seasonal speed
reductions) can provide an effective means of mitigating risk
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FIGURE 4 | Ship-strike risk for (A) fin, (B) humpback, and (C) blue whales calculated using mean predicted whale distributions is shown for a year with nearshore
(2008) and offshore (2010) traffic. Ship-strike risk was defined as the predicted number of whales multiplied by the km/day traveled by ships, which is a measure of
co-occurrence. Consequently, the numbers used to define the break points in the maps provide a relative measure of increasing risk. The same break points were
used for all species and years to allow for comparisons among maps. The percentage of ships traveling more than 24 nmi from the mainland coast (i.e., the 2009
clean fuel boundary) was used to define nearshore versus offshore traffic (see text for details).

Frontiers in Marine Science | www.frontiersin.org 9 February 2020 | Volume 6 | Article 793

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00793 February 4, 2020 Time: 17:12 # 10

Redfern et al. Variability in Ship-Strike Risk

North
P

er
ce

nt
 C

ha
ng

e 
in

 R
is

k

−
60

−
40

−
20

0
20

40
60

19
91

19
93

19
96

20
01

20
05

20
08

20
09

Central

P
er

ce
nt

 C
ha

ng
e 

in
 R

is
k

−
40

−
30

−
20

−
10

0
10

19
91

19
93

19
96

20
01

20
05

20
08

20
09

San Francisco

P
er

ce
nt

 C
ha

ng
e 

in
 R

is
k

−
20

−
10

0
10

20

19
91

19
93

19
96

20
01

20
05

20
08

20
09

South

P
er

ce
nt

 C
ha

ng
e 

in
 R

is
k

−
30

−
20

−
10

0
10

20
30

19
91

19
93

19
96

20
01

20
05

20
08

20
09

Fin Whales
Humpback Whales
Blue Whales

FIGURE 5 | We assessed the effect of interannual variability in whale distributions on ship-strike risk using the percent change between risk for the nearshore versus
offshore traffic scenarios; the x-axes represent years in which marine mammal surveys were conducted. Negative values indicate a decrease in mean risk from the
offshore, compared to the nearshore, traffic scenario. Whether the nearshore traffic scenario poses a higher ship-strike risk than the offshore traffic scenario in each
region is consistent across all years for each species, except the 1993 blue whale predictions in the southern region.

resulting from ship traffic variability off California. For example,
risk was highest for all three species in the central region when
traffic occurred nearshore, rather than offshore (Figures 3–5).
Consequently, mean risk for all three species can be reduced by
up to 35% if traffic follows an offshore route similar to the routes
followed by ships in 2009–2011. This reduction in risk does not
mean that ship strikes will be eliminated, but that the number
of strikes will be minimized over long time periods. There are
several possible reasons the nearshore traffic scenario represented

a greater overlap with fin whale distributions in this region.
Fin whale abundance is higher close to shore in this region,
compared to the other regions. Additionally, while the percentage
of traffic within 24 nmi of the coast follows the nearshore and
offshore traffic scenario definitions in the central region, traffic
was generally shifted farther from the coast and was more diffuse
in the nearshore traffic scenario.

Ship-strike risk was different for fin whales versus blue
and humpback whales in the other regions. In particular, risk

TABLE 2 | The percent change between mean risk from nearshore versus offshore traffic and nearshore versus 2012–2014 traffic (which occurred offshore in some
regions and both nearshore and offshore in other regions; Table 1), where nearshore and offshore traffic were defined using a boundary that was 24 nmi from the
mainland coast (see text for details).

Fin Humpback Blue

Offshore 2012–2014 Offshore 2012–2014 Offshore 2012–2014

North 13 11 −37 −41 −21 −23

San Francisco 6 5 −16 −9 −13 −8

Central −9 −7 −34 −28 −18 −15

South 16 5 −20 −18 −6 −6

Negative values indicate a decrease in mean risk from the offshore traffic scenario or 2012–2104 traffic.
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FIGURE 6 | Interannual variability in locations containing the highest predicted number of whales was assessed using the number of years (7 years for fin and blue
whales; 6 years for humpback whales) the prediction in each grid cell was among the highest 5% of all predictions. Although these analyses were conducted using
all whale predictions (i.e., from the coast of California out to 300 nmi), the regions used to assess ship-strike risk (black polygons) are also shown. Areas with the
highest predicted number of whales were consistent among years as were areas that never contained the highest predictions.

for blue and humpback whales was highest in the northern,
San Francisco, and southern regions for the nearshore traffic
scenario. Risk for fin whales was highest for the offshore traffic
scenario in these regions. Consequently, more detailed and
fine-scale analyses are needed to design strategies that can
mitigate risk for all species in these regions. For example,
Redfern et al. (2019) developed methods to estimate ship-strike
risk in strategies proposed by stakeholders to reduce risk in
the Southern California Bight and found that speed reductions

and expanding the existing area to be avoided may provide an
optimal solution for addressing stakeholder needs and reducing
ship strikes. Analyses are also needed to address risk from
January-June because studies have found seasonal changes in fin
(Scales et al., 2017) and humpback (Becker et al., 2017) whale
distributions off California. Finally, we used a measure of whale-
ship co-occurrence (i.e., predicted number of whales multiplied
by the cumulative distance traveled by ships) to estimate risk and
it is possible to estimate risk using encounter rate theory, which
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FIGURE 7 | We estimated the change in the total ship-strike risk experienced by each whale population using the ratio of the risk in each survey year to the risk at
the start of the survey period (i.e., 1991). We used the risk from the traffic scenario (i.e., nearshore or offshore; see text for details and Figure 3) resulting in the
highest risk for each species in each region. For humpback and blue whales, the nearshore traffic scenario had the highest risk in all regions. For fin whales, the
offshore traffic scenario had the highest risk for all regions except the central region. Risk was highest from the nearshore traffic scenario in the central region for fin
whales. The x-axes represent years in which marine mammal surveys were conducted.

can incorporate ship speed and whale behavior (Martin et al.,
2016). Moore et al. (2018) used Conn and Silber’s (2013) equation
relating ship speed to the probability that a ship strike is fatal
to estimate that reductions in ship speeds in the Santa Barbara
Channel (i.e., the 2008 traffic pattern in the southern
California region; Figure 1) represent a 20% reduction in the
probability of a fatal strike. Consequently, ship speeds should be
considered when designing strategies that can mitigate risk (e.g.,
Redfern et al., 2019).

Our analyses show that static, spatial management strategies
can be used to mitigate ship-strike risk from nearshore versus
offshore traffic off California. Strategies could include routing
ships through areas that consistently had lower predicted whale
densities and establishing areas to be avoided or requiring
reduced ship speeds in areas with consistently higher predicted
whale densities. At finer scales, it is important to consider
where ships transition from offshore to nearshore travel. It is
also important to consider how ships travel when they are
nearshore. For example, nearshore traffic off southern California
occurs in shipping lanes in the Santa Barbara Channel. In
2007, four blue whales were struck and killed, most likely

in these shipping lanes. Seasonal voluntary and incentivized
speed reductions have been used in this area to reduce ship-
strike risk (Freedman et al., 2017). However, there is little
compliance with voluntary speed reductions and incentivized
speed reductions only reach a small percentage of ships
traveling in this region and require continued financial support
(Freedman et al., 2017).

Our study suggests that the magnitude of ship-strike risk may
increase as whales recover from whaling. For example, increases
in the abundance of fin and humpback whale populations in
the North Pacific were associated with increased ship-strike risk
off California (Figure 7). The magnitude of risk may also be
affected by shifts in whale distributions in response to climate
change. For example, a broad-scale, northward shift in blue whale
distributions throughout the North Pacific was associated with
increased ship-strike risk for blue whales off northern California
(Figure 7). The magnitude of ship-strike risk observed for fin,
humpback, and blue whales was also influenced by the location
of ship traffic. The spatial variability in ship traffic patterns
observed off California in response to air pollution regulations
may also occur in other regions. Air pollution regulations are
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being considered for many regions, including the Mediterranean
Sea and off Japan, Australia, Singapore, and China (Moore et al.,
2018). It is important to understand how potential shifts in ship
traffic in response to these regulations will affect ship-strike risk
for large whales. Our study suggests that static management
strategies may effectively mitigate risk from variability in ship
traffic patterns, if whales congregate in consistent locations for
feeding and breeding.
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